During the first days of this week, we had quite special meteorological conditions at Punta Arenas. Persistent wind from the north brought unusually warm air to the Magallanes region. Together with the absence of clouds and hence strong heating by the sun, surface temperatures climbed to extraordinarily high values. On Monday (4 Feb), the maximum temperature at Punta Arenas airport reached almost 25°C and on Tuesday the maximum was 28°C. Long-term temperature records were set for several other stations throughout the region, as for example Porvenir and Puerto Natales with both above 30°C (https://twitter.com/meteochile_dmc/status/1092808761167831040). On Tuesday evening, the heat period came to a sudden end, when a cold front arrived. This is nicely visible in the surface observation (at the UMAG roof platform, shown below) as temperature drops by 15°C (red curve) and pressure increases (green curve) after 17:30 UTC (14:30 local). A nice feature is also the jump in temperature and drop in relative humidity (blue curve) directly before the front, which is probably caused by Föhn effects as the wind increased and backed toward westerly directions.


But the airmass from the north did not only bring high temperatures, but aerosol as well. Our lidar PollyXT (see also prior blog posts here and here) detected several lofted layers between 1 and 5km height on Monday and Tuesday. Several plumes are visible in the backscatter signal. One with rather weak backscatter and low depolarization ratio on Tuesday and another one with higher backscatter and some features with higher depolarization ratio.


The aerosol optical depth, a measure for total aerosol load in the atmosphere, reached values up to 0.1 (at a wavelength of 500nm). The spectral dependence between 440 and 870nm (called Ångström exponent) was around 1.5, indicating predominantly small particles with a diameter well below 1μm. Based on their optical parameters these particles are most likely smoke caused by wildfires, on Tuesday maybe mixed with some soil dust.

We were not yet able to pin-down the source of this aerosol plume unambiguously. Two source regions are possible: either the forest fires in the Region of Araucanía in Chile or the fires on Tasmania, Australia. Simulations with the HySPLIT (https://www.ready.noaa.gov/HYSPLIT.php) trajectory model (a model that traces the pathway of air parcels), show that the airmass, which was at Punta Arenas in 3km height on Tuesday 12 UTC (9 local) crossed both region during the prior 10 days. We are thus looking forward to have to solve yet another research puzzle.




On Thursday evening, LACROS was struck by a power failure that affected the whole university. After almost 3 hours electricity was available again and we were able to put most instruments operational again right after the incidence. The cloud radar MIRA required some more attention by the on-site personal and the remote support from Leipzig. On Friday, we could narrow down the problems to an ethernet connector. Let us hope that the backup connection will work until we can fix the problem. 

The cause for this interruption were very strong winds during the whole day. A low-pressure system over Drake street triggered west-north-westerly flow at Punta Arenas. Supported by the terrain, this situation seems to favor strong surface winds at the city. Below you can see the observations of our scanning Doppler lidar, which (among other things) can measure profiles of horizontal wind velocity and direction. As the signal requires the presence of particles, that scatter the light back to the instrument. Hence, continuous information is usually constrained to the boundary layer – the layer of the atmosphere, which is directly coupled to the ground and contains comparably high amounts of aerosols.  Shown is a time-height series of the full day. Above 700 m the strong winds persisted the whole day, but affected ground only at around 10 UTC (7 local) and after 17 UTC (14 local).


The strongest gusts at the ground reached 107km/h in the city and 117km/h at the harbor. The local newspaper also reported on this issue: https://laprensaaustral.cl/titular1/temporal-de-viento-dejo-multiples-estragos-en-punta-arenas/


Happy new year everybody. I'd like to point your attention to the Polly-XT measurements of clouds and aerosol taken in the morning of 10 January 2019.

Below you see a nice quicklook created from PollyXT data. Besides cloud layers at all heights above 2 km, a pronounced planetary boundary layer (PBL) is visible at heights below 2 km. This is nicely shown in the upper panel in the Figure below that shows the attenuated backscatter coefficient observed at 1064 nm. A look at the lower panel, showing the 532-nm volume depolarization ratio, indicates the presence of a depolarizing layer at the top of the PBL. This is according to recent studies of TROPOS dried sea salt aerosol, containing crystallized salt particles. Their non-sphericity causes a certain degree of depolarization to the backscattered light.


It is also worth looking at the observed cloud layers: between 0500 and 0800 UTC the cloud layer at 3-4 km height does not produce any ice particles, even though temperatures at cloud top (detected by the cloud radar, not seen by the lidar) where below -8 to -10 °C.